Why Jordan Algebras Are Natural in Statistics: Quadratic Regression Implies Wishart Distributions
نویسندگان
چکیده
— If the space Q of quadratic forms in Rn is splitted in a direct sum Q1 ⊕ · · · ⊕ Qk and if X and Y are independent random variables of Rn, assume that there exist a real number a such that E(X|X + Y ) = a(X + Y ) and real distinct numbers b1, ..., bk such that E(q(X)|X + Y ) = biq(X + Y ) for any q in Qi. We prove that this happens only when k = 2, when Rn can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure. Résumé (Pourquoi les algèbres de Jordan sont-elles naturelles en statistiques? La régression quadratique implique la distribution de Wishart) Si l’espace Q des formes quadratiques sur Rn est décomposé en une somme directe Q1⊕· · ·⊕ Qk et si X et Y sont des variables aléatoires indépendantes de Rn, supposons qu’il existe un nombre réel a tel que E(X|X + Y ) = a(X + Y ) ainsi que des nombres réels distincts b1, ..., bk tels que E(q(X)|X + Y ) = biq(X + Y ) pour tout q de Qi. Nous montrons que cela n’arrive que pour k = 2, que lorsque Rn peut être structuré en algèbre de Jordan euclidienne et que lorsque X et Y suivent des lois de Wishart correspondant à cette structure. Texte reçu le 2 juin 2009, accepté le 6 novembre 2009 G. Letac, Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 31062 Toulouse, France • E-mail : [email protected] J. Wesołowski, Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Warszawa, Poland • E-mail : [email protected] 2000 Mathematics Subject Classification. — 60H10, 62H05.
منابع مشابه
Riesz measures and Wishart laws associated to quadratic maps
We introduce a natural definition of Riesz measures and Wishart laws associated to an Ω-positive (virtual) quadratic map, where Ω ⊂ Rn is a regular open convex cone. We give a general formula for moments of the Wishart laws. Moreover, if the quadratic map has an equivariance property under the action of a linear group acting on the cone Ω transitively, then the associated Riesz measure and Wish...
متن کاملThe Wishart Distributions on Homogeneous Cones
The classical family of Wishart distributions on a cone of positive definite matrices and its fundamental features are extended to a family of generalized Wishart distributions on a homogeneous cone using the theory of exponential families. The generalized Wishart distributions include all known families of Wishart distributions as special cases. The relations to graphical models and Bayesian s...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملEstimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein’s loss
In this paper the problem of estimating a covariance matrix parametrized by an irreducible symmetric cone in a decision-theoretic set-up is considered. By making use of some results developed in a theory of finite-dimensional Euclidean simple Jordan algebras, Bartlett’s decomposition and an unbiased risk estimate formula for a general family of Wishart distributions on the irreducible symmetric...
متن کاملHyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras
In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.
متن کامل